
PHYSICAL REVIEW E, VOLUME 64, 021107
Do strange kinetics imply unusual thermodynamics?
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We introduce a fractional Fokker-Planck equation~FFPE! for Lévy flights in the presence of an external
field. The equation is derived within the framework of the subordination of random processes which leads to
Lévy flights. It is shown that the coexistence of anomalous transport and a potential displays a regular
exponential relaxation toward the Boltzmann equilibrium distribution. The properties of the Le´vy-flight FFPE
derived here are compared with earlier findings for a subdiffusive FFPE. The latter is characterized by a
nonexponential Mittag-Leffler relaxation to the Boltzmann distribution. In both cases, which describe strange
kinetics, the Boltzmann equilibrium is reached, and modifications of the Boltzmann thermodynamics are not
required.
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Strange kinetics@1,2#, which involves diffusional anoma
lies, both sublinear and superlinear, and nonexponentia
laxations, is quite wide-spread, and has been observed
broad range of systems@1,3–6#. The ubiquity of strange ki-
netics rests upon generalization of the central limit theor
due to Lévy @7#, a generalization that puts heavy-tailed d
tributions on the same level of importance as the well-kno
Gaussian distribution.

Anomalous diffusion in the presence or absence of
external field has been modeled in a number of ways, inc
ing fractional Brownian motion@8#, generalized diffusion
equations@9#, continuous time random walk~CTRW! models
@10#, Langevin and generalized Langevin equations@11# and
generalized thermostatics@12#. In particular, the CTRW
model has been demonstrated to be a powerful approac
describing subdiffusive as well as superdiffusive proces
and in interpreting experimental results. It is not straightf
ward, however, to incorporate force fields and boundary c
ditions into this formalism.

An alternative approach to processes which disp
strange kinetics is based on fractional equations, which
suitable for handling external fields and for consideri
boundary value problems. In the case of subdiffusion it w
realized that the replacement of the local time derivative
the diffusion equation by a fractional operator accounts
memory effects responsible for anomalous behavior@5,13#.
In the presence of an external field a fractional Fokk
Planck equation~FFPE! has been introduced@5,13#,

]

]t
P~x,t !5K0Dt

12aLFPP~x,t !, ~1!

whereLFP is the Fokker-Planck operator:

LFP5
]2

]x2
2

]

]x

f ~x!

kBT
. ~2!

0Dt
12a is a fractional Riemann-Liouville operator 0,a,1,

andK is a generalized~sub!diffusion coefficient, having the
dimension@K#5@L2/ta#. The force f (x) is related to the
external potentialU(x) through f (x)52dU/dx, and kB is
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the Boltzmann constant. The differential operator0Dt
12a ,

acting on functions of time, is defined through@14#

0Dt
12aZ~ t !5

1

G~a!

]

]tE0

t

dt8
Z~ t8!

~ t2t8!12a
. ~3!

The FFPE@Eq. ~1!# has been derived using a Kramers-Moy
expansion of the CTRW nonlocal equation@13#. The solution
of this FFPE is characterized by a subdiffusive behavior a
by a nonexponential Mittag-Leffler decay of the sing
modes. The decoupled structure of Eq.~1! guarantees tha
the Boltzmann distribution is attained at equilibriu
@5,13,14#. We note that the latter is also a property of t
regular Fokker-Planck equation corresponding toa51.

Less clear has been the situation for FFPE’s which co
spond to Le´vy spatialflights. Previously proposed equation
@2,11# seem not to lead to the Boltzmann distribution, a po
whose impact has been overlooked. This might theref
suggest that strange kinetics requires unusual thermodyn
ics @12#. Here we derive a FFPE for Le´vy flights in the pres-
ence of an external force. Our starting point is a represe
tion of Lévy flights in terms of a subordination of random
processes@15,16#. This representation corresponds to pr
cesses in which space and time are decoupled, and it doe
account for Le´vy walks @1,4,10#. That is, in what follows we
obtain a diverging mean-square displacement in the fo
free case. The solution of the FFPE which we derive ag
leads to a Boltzmann distribution in the equilibrium limi
re-emphasizing that there is no need to modify conventio
thermodynamics in order to obtain strange kinetics. We sh
some examples for solving this FFPE for boundary va
problems.

As we proceed to show, the corresponding generaliza
of the Fokker-Planck equation for Le´vy flights is

]

]t
P~x,t !52K (a)~2LFP!aP~x,t !, ~4!

where the operator (2LFP)a is theath power of the opera-
tor 2LFP52]2/]x21]/]x@ f (x)/kBT#, as will be derived
©2001 The American Physical Society07-1
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below, and the corresponding generalized~super!diffusion
coefficient has@K (a)#5@L2a/t# as dimension.

The CTRW’s can be viewed as Markovian random wa
on a lattice~with lattice constanta) given in terms of the
number of stepsn of the random walker.P(x,n) is a prob-
ability distribution function~PDF! of the particles’ displace-
mentx aftern steps. The number of stepsn performed during
the timet follows the probability distributionS(n,t), which
may include memory effects@17#. The overall displacemen
during timet is then given by

P~x,t !5 (
n50

`

P~x,n!S~n,t !. ~5!

In the force-free case the PDFP(x,n) typically corresponds

to normal diffusion behavior, and thusx2}n. On the other
hand, the typical number of steps can grow sublinearly
superlinearly in time, so that the overall behavior can
anomalous.

Here we concentrate on the superdiffusive case, and
sume that the random process$n(t)% is characterized by a
diverging mean density of events, so that the first momen
the numbern of steps does not exist. As a realization of su
a process we can take that the numbers of jumps du
different time intervals of unit length are independent ra
dom variables distributed according toS(n,1)}n212a. For t
large enough the distributionS(n,t) tends then to a stabl
Lévy law L(n;a,b) @15#. Sincen is non-negative, this law is
the one-sided extreme distribution for whichb52a (0
,a,1). If different time intervalst are considered, the dis
tribution S(n,t) scales as

S~n,t !5
1

t1/a
LS n

t1/a
;a,2a D . ~6!

Now imagine a random walker moving under the influen
of a weak forcef (x). Such a force introduces an asymme
into the walker’s motion, since the probabilities for forwa
and backward jumps,w1 andw2 are now weighed with the
corresponding Boltzmann factors,w1 /w25exp(fa/kBT).
For small f one can takew151/21 f a/2kBT and w251/2
2 f a/2kBT. Note that the process described in such a wa
a Markovian one, and can be characterized by a transi
probability

W~x,t1Dtux8,t !5 (
n50

`

P~x2x8,n!S~n,Dt !. ~7!

For Dt in the intermediate range, i.e., large enough to vi
bothx andn as being continuous and to approximateP(x,n)
by the GaussianP(x,n)5(2pn)21/2exp@2(x2vn)2/2a2n#
with v5 f a/2kBT, yet small enough to have the typical di
placement small on the scale of change off (x), one obtains

W~x,t1Dtux8,t !5E
0

` 1

A2pn
expS 2

~x2x82vn!2

2a2n
D

3S~n,Dt !dn. ~8!
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The overall Markovian process is then governed by the in
gral Chapman-Kolmogorov equation

P~x,t1Dt !5E W~x,t1Dtux8,t !P~x8,t !dx8. ~9!

Let us concentrate on the long-time, large-x, behavior of the
system, and take the forcef to be smooth. On such scales w
consider thex Fourier transform of Eq.~9!, and obtain

P~k,t1Dt !5E
0

`

dn exp@2~ ikv1k2!a2n#S~n,Dt !P~k8,t !.

~10!

For random processes leading to diffusive behavior, the
moment of the distributionS(n,Dt) for small Dt exists, so
that one can expand for smallk the exponential into a powe
series, obtaining

P~k,t1Dt !5E
0

`

dn@12~ ikv1k2!a2n#S~n,Dt !P~k,t !

5E
0

`

dn@12~ ikv1k2!a2^n&Dt#P~k,t !

5P~k,t !2~ ikv1k2!a2^n&DtP~k,t ! ~11!

~a Kramers-Moyal procedure!. For normal diffusive pro-
cesses one has^n&Dt.wDt, wherew is the jumping rate, so
that, in the continuum limit,

]

]t
P~k,t !52KS ik

f

kBT
1k2D P~k,t !, ~12!

with K5a2w/2 being the diffusion coefficient. In thex rep-
resentation this is the conventional Fokker-Planck equa
~FPE! @18#

]P~x,t !

]t
5KS 2

]

]x

f

kBT
1

]2

]x2D P~x,t !. ~13!

In the case whenS(n,Dt) is a stable Le´vy law of indexa,
0,a,1, the first moment ofn diverges, and the series ex
pansion of the exponential@Eq. ~11!#, is not pos-
sible. On the other hand, fora,1 the integral f(k)
5*0

` exp(2kt)S(t,Dt)dt converges for eachk5j1 ih,
Rej.0, and is a stretched-exponential function@15#. For
extreme stable Le´vy distributions with 0,a,1 ~those
which vanishing identically for negative arguments! one has
f(k)5exp(2ka). Thus, performing the integration in Eq
~10!, one obtains

P~k,t1Dt !5expF2K (a)S ik
f

kBT
1k2D a

Dt GP~k8,t !.

~14!

Now expanding the exponential and repeating the steps l
ing to Eq.~11!, we have
7-2
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]P~k,t !

]t
52K (a)S ik

f

kBT
1k2D a

P~k,t !. ~15!

Comparing the terms2( ik f /kBT1k2)a and 2( ik f /kBT
1k2) in Eqs.~15! and~12!, which represent the correspon
ing transport operatorsLa andLFP5L1 in Fourier space, we
see that they are connected by the relationLa
52(2LFP)a. The same relation holds, of course, when o
shifts to thex representation:

]P~x,t !

]t
52K (a)~2LFP!aP~x,t !; ~16!

see Ref.@19#. Note that Eq.~16! differs from the expression
proposed in Ref.@11#, where either only the second part
the Fokker-Planck operator~a D term! is changed@and cor-
responds in our notation to2(2]2/]x2)a#, or where a sum
of two terms is introduced, so that fractional space deri
tives of the ordersa and 2a appear. Note that, in general,La
cannot be decoupled into additive parts responsible s
rately for drift and for diffusion.

Some important properties of Le´vy diffusion in the pres-
ence of a force field stem from Eq.~16!. Since2LFP andLa
commute with each of their powers, the eigenfunctions
these operators coincide. The corresponding eigenvalue
La are those of2LFP raised to the power ofa:

lk
FFP52~2lk

FP!a. ~17!

Note that the eigenfunctions of2( ik f /kBT1k2) and of
2( ik f /kBT1k2)a ~describing a conventional FPE and
FFPE in an infinite homogeneous system, respectively! can
be chosen to be the same. Exemplarily, exp(ikx) is the eigen-
function of free motion in both cases; we denote its eig
values bylk

FP and lk
FFP , respectively. Thus, ifLFP has a

~nondegenerate! zero eigenvalue, whose eigenfunction cor
sponds to a stationary state, the same holds forLa . The
stationary states of the systems described by the FPE
FFPE therefore coincide. For closed systems~no currents at
infinity!, the stationary state is that of thermodynamic eq
librium, and is given by the Boltzmann distribution. This is
general property of each subordination process, since a
stationary int is also stationary inn.

The solution of FFPE’s under the given initial and boun
ary conditions can be obtained by means of an eigenfunc
expansion, as is generally the case for normal and subd
sive motion@5,13,14,18#. If fm(x) are the eigenfunctions o
the Fokker-Planck operator, then the solution of the FF
can be expressed as

P~x,t !5(
m

amfm~x!Fm~ t !, ~18!

whereFm(t) are the corresponding temporal decay form
Here the difference between sub- and superdiffusive FFP
becomes evident: in the subdiffusive caseFm(t) are solu-
tions of a fractional ordinary differential equation
02110
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Fm~ t !5Klm 0Dt

12aFm~ t ! ~19!

(ln being real and negative!. Hence Fm(t) are Mittag-
Leffler functions@12–14#. On the other hand, the superdiffu
sive FFPE~being of first order in time! leads to

d

dt
Fm~ t !52K (a)~2lm!aFm~ t !, ~20!

corresponding to a simple exponential relaxationFm(t)
5exp(2K(a)ulmuat). Thus, in the case of adiscrete spectrum
and of real, negativelm the Lévy-flight FFPE retains the
exponential nature of the relaxation to equilibrium, a beh
ior typical for normal FPE’s, so that only the correspondi
relaxation times change. For example, the relaxation beh
ior of a particle in a harmonic potential,f (x)52gx, follows
immediately from a standard solution of the FPE@18#: The
eigenfunctions can be expressed through those of the Sc¨-
dinger equation, and the spectrum consists of a zero eig
value,l050, and of equidistant negative eigenvalues,ln5
2(g/kBT)n. Since the spectrum of a Fokker-Planck opera
with a harmonic potential is discrete, the relaxation is mu
exponential. The equilibrium state of such a system~the
eigenfunction corresponding tol050) shows a Boltzmann
distribution. The longest relaxation time is given by the fi
eigenvalue,l152g/kBT, so thatt5(kBT/g)a/K (a) .

Another interesting example corresponds to the motion
the absence of a field of a particle in an interval with abso
ing boundaries atx56 l . The eigenfunctions of the Fokker
Planck operator are now the trigonometric function
fm(x)5cos@(m11/2)px/ l #, and the corresponding eigenva
ues arelm52@(m11/2)p/ l #2. The eigenvalues ofLa are
lm52K (a)@(m11/2)p/ l #2a, so that the overall relaxation
again follows a multiexponential pattern. The survival pro
ability for a particle initially situated at the middle of th
interval,x50, is equal to

P~ t !5 (
m50

` E
2 l

l

cosF ~m11/2!
p

l
xGelmt

5 (
n50

`
4

p

~21!n

~2m11!
e2Ka[(n11/2)p/ l ] 2at. ~21!

At longer times this decay tends to a simple exponential w
the characteristic timet5K (a)

21( l /2p)2a. Note that thel de-
pendence of this characteristic time differs from that enco
tered in normal diffusion, wheret5K21( l /2p)2. In the case
a51/2, a simple analytical expression holds at all times;

P~ t !5arctanFexpS 2
p

2

K (1/2)

l
t D G ;

see Eq. 5.2.4.8 of Ref.@20#.
Using a representation of Le´vy flights in terms of a sub-

ordination of random processes, and following the Krame
Moyal procedure, we have derived a fractional Fokk
Planck equation for Le´vy flights. It was shown that when th
7-3
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regular Fokker-Planck operator has a discrete spectrum~as
occurs under appropriate potentials or boundary conditio!
anomalous transport results in an exponential relaxation
ward an equilibrium distribution. These properties of t
Lévy-flight FFPE are compared with earlier findings for su
diffusive FFPE’s. The latter are characterized by a nonex
nential Mittag-Leffler relaxation. The equilibrium solutio
s
ch

a
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corresponds in both cases to the Boltzmann distribution,
phasizing that there is no need to modify conventional th
modynamics in order to obtain strange kinetics.
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@2# G.M. Zaslavsky, inLévy Flights and Related Topics in Physic,
edited by M.F. Shlesinger, G.M. Zaslavsky, and U. Fris
~Springer, Berlin, 1995!.

@3# J.-P. Bouchaud and A. Georges, Phys. Rep.195, 127 ~1990!.
@4# J. Klafter, M.F. Shlesinger, and G. Zumofen, Phys. Tod

49 ~2!, 33 ~1996!.
@5# R. Metzler, E. Barkai, and J. Klafter, Phys. Rev. Lett.82, 356

3 ~1999!.
@6# V.V. Uchaikin and V.M. Zolotarev,Chance and Stability,

Stable Distributions and Their Applications~VSP, Utrecht,
1999!.
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